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There is increasing evidence that the failure of 
many medical devices is a result of bacterial 
contamination.1 Free-floating (planktonic) 

bacteria change when they come into contact 
with the surface of an alloplastic implant. Bacte-
ria are able to form a three-dimensional matrix by 
excreting polymeric substances, which eventually 
bind firmly to the underlying surface. Over time, 
a biofilm, defined as bacteria encased within their 
own polymeric matrix, reaches a critical mass on 
the contaminated implant, induces a host inflam-
matory reaction, and can lead to ultimate failure 
of the implant.2 It has been shown that bacteria 
within biofilms are significantly less susceptible to 
antibiotics, host defenses, and antiseptics, a char-
acteristic making them difficult to treat.3,4 Once a 
biofilm has led to implant failure, clinical options 
are limited and involve lifelong suppressive anti-
biotic therapy or revision surgery, which carries 
significant risk of morbidity and, in some cases, 
death. It is estimated that the cost of revision sur-
gery from implant infection is approaching $1 bil-
lion a year in the United States alone.2,5 The issue 
of device-associated infection will continue to 
grow as our Western population ages and demand 
for medical prosthetics increases. It is therefore 
imperative that strategies to reduce the risk of bio-
film contamination of medical devices be devel-
oped and tested.

This article summarizes the pathogenesis of 
device-associated infection, outlines the evidence 
for device-associated infection, and outlines oper-
ative strategies for reducing the risk of biofilm 
contamination at the time of device deployment. 
It also outlines strategies under investigation for 
reducing the risk of device-associated infection.

FORMATION OF BACTERIAL BIOFILM
Biofilm formation follows a developmental 

progression involving four main stages (Fig. 1). 
These are reversible attachment, irreversible 
attachment, growth and differentiation, and dis-
semination.6 Evidence from in vitro studies of 
biofilms suggests that this development is geneti-
cally regulated.7 Initial contact of bacteria with a 
surface is mediated by van der Waals forces and 
may be determined by surface charge.8 Once in 
contact, the bacteria undergo phenotypic change 
from a planktonic to a sessile (biofilm) state. 
The production of extracellular polymeric slime 
is then initiated. The combination of individual 
cells encased in their own extracellular polymeric 
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slime is defined as biofilm.9 The biofilm becomes 
irreversibly attached to the underlying surface.

During growth and differentiation, the biofilm 
progressively spreads over the surface. Morphol-
ogy of this biofilm varies according to environ-
mental conditions. In a high-shear environment, 
for example, the biofilm is compact and densely 
cellular, with less extracellular polymeric slime. In 
a low-shear environment, flourishing extracellular 
polymeric slime “mushrooms” balloon out into the 
surrounding environment.10–12 Within the matrix, a 
number of survival advantages are conferred upon 
the bacteria (Fig. 2). The extracellular polymeric 
slime provides a relative buffer against diffusion of 

antibiotics and antiseptics.10,13–15 It also shields the 
bacteria from host immune access and may trig-
ger a more intense inflammatory response.3,16,17 
There is some evidence that this inflammation 
may further provide advantage to the biofilm by 
promoting host cell lysis and subsequent release 
of nutrients for bacteria.16 There are other, more 
subtle advantages, which include cooperative 
metabolism based on complex intercellular signal-
ing18 and the ability to use horizontal gene trans-
fer to protect against unexpected environmental 
challenges.19,20 Bacterial persister cells, which are 
metabolically inactive and highly resistant to anti-
infective agents, have been shown to exist within 

Fig. 1. Stages of biofilm growth: reversible attachment, irreversible attachment, growth and differentiation, and dissemination.

Fig. 2. Survival advantages of bacteria within biofilm include inactivation of antibiotics/anti-
septics, prevention of host immune cell penetration, diffusion block, quorum sensing, gene 
exchange, variation in pH and oxygenation, and persister cells.
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mature biofilms.21 The environment within the 
biofilm is also heterogeneous, with significant vari-
ation in local pH and oxygenation.22 Furthermore, 
evidence is emerging that the majority of biofilm 
is multispecies and in some cases can also harbor 
other prokaryotic cells and viruses.6

In the dissemination phase, cells from bio-
film are released to colonize new surfaces. The 
method of dissemination can vary depending on 
whether the planktonic bacteria are motile or 
nonmotile.10,11

Surface biofilm has been visualized in the 
oldest detected fossils on earth, aged 3 billion 
years.6,23,24 The mechanisms and strategies for sur-
face attachment, proliferation, and dissemination 
have developed over millennia and effectively 
guarantee bacterial survival.

DETECTION OF BACTERIAL BIOFILM
Standard microbiological sampling is insuffi-

cient for detecting bacterial biofilm. Few bacteria 
are present on the surface of biofilm, and their 
release is prevented by their enclosed extracellu-
lar polymeric slime. In addition, their metabolic 
rate is low, making them difficult to culture.3 The 
traditional approach to the detection of biofilm 
involves two steps: the recovery of live bacteria 
within the biofilm and subsequent identifica-
tion and imaging of biofilm on the surface of the 
implant.25–27

For imaging biofilm, scanning electron micros-
copy offers the advantage of generating images 
of bacteria cells and the extracellular polymeric 
slime directly attached to the underlying surface 
(Fig. 3). However, because of the small visual win-
dow, the technique is open to sampling error.

For bacterial recovery, sonication serves to 
fracture the extracellular polymeric slime and 
release bacteria into the sample.28,29 These bacte-
ria are then cultured in enrichment media and are 
identified by means of traditional microbiological 
methods. This technique, while still remaining 
the standard, has been recently supplanted by 
more rapid and sensitive diagnostic techniques.

Bacterial DNA and RNA detection and 
sequencing have been used to detect bacteria 
within biofilm.31,32 Polymerase chain reaction 
has the ability to detect and amplify low levels of 
bacterial nucleic acid for subsequent sequencing 
and molecular diagnosis. A number of authors 
have reported that polymerase chain reaction–
based detection has identified microorganisms in 
samples when sonication culture techniques have 
failed.33,34 However, polymerase chain reaction 

can detect only nucleic acid, not live organisms, 
and is open to false-positive reporting.

More recently, fluorescent in situ hybridization 
has been used. This technique utilizes a fluorescein-
labeled probe, specific for the 16S ribosomal RNA 
of prokaryotic cells, to bind and detect biofilm on 
surface samples. Once bound, the biofilm can be 
detected with confocal laser scanning microscopy 
or fluorescent microscopy.33 Confocal laser scan-
ning microscopy can also be used in conjunction 
with live/dead DNA stains for nondestructive anal-
ysis and is used to characterize biofilm  morphology 
in vitro (Fig. 4). The technique can be performed 
in real time to study the effect of treatment strate-
gies on biofilm morphology.

The combination of multiple diagnostic 
techniques is the best strategy to detect biofilm 
in device-associated infection. These methods 
are not readily available commercially and are 
currently performed only in reference biofilm 
research laboratories. The quest continues for 

Fig. 3. Scanning electron microscopic images of biofilm on 
human breast implants. (Above) Staphylococcal biofilm on the 
surface of a breast prosthesis. (Below) Staphylococcal biofilm on 
the inner aspect of breast capsular contracture.
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a rapid, sensitive, specific diagnostic test for the 
presence of biofilm. A recent review has suggested 
that improvements in targeted radionuclide scan-
ning may provide a novel approach for detection 
of device-associated infection.34

SCOPE OF DEVICE-ASSOCIATED 
INFECTION

Bacterial biofilm has been recovered from 
an increasing number of device-associated infec-
tions, including joint prostheses,30 penile prosthe-
ses,35 fracture fixation devices,36,37 intravenous38 
and urinary catheters,39 peritoneal dialysis cath-
eters,40 contact lenses,41 breast prostheses,42,43 
endoscopes,44 cardiovascular45 and biliary46 stents, 
pacemakers,47 and cochlear implants.48

The evidence for biofilm as the leading 
cause of implant failure will be outlined for pros-
thetic joints, cardiovascular implants, and breast 
implants, as these have the most relevance to plas-
tic and reconstructive surgeons.

Catheter Infection
Hematogenous spread from colonized cen-

tral venous catheters is a long-recognized route 
of infection.49,50 The traditional method for deter-
mining catheter colonization utilizes a semiquan-
titative culture technique in which a 5-cm segment 
of catheter is rolled across blood agar.51 Sonica-
tion/enrichment culture has been shown to be 
equally sensitive.52

Prosthetic Joints
Up to 10 percent of joint prostheses will 

ultimately need revision surgery.53–55 With 

improvements in surgical technique and prosthe-
sis design and biomaterials, the complications of 
heterotopic ossification, fracture, and dislocation 
are relatively uncommon. The two most common 
causes requiring revision surgery are aseptic or 
mechanical loosening and infection, which are 
estimated to occur in up to 25 percent of patients,56 
although not all of these require surgical revision. 
Although frank infection is uncommon, occurring 
in fewer than 1 percent of all joint replacements, 
there is increasing evidence that some proportion 
of “aseptic” loosening is in fact due to underlying 
biofilm infection.34 Device-associated infection in 
relation to prosthetic joints is a serious complica-
tion of joint replacement surgery and carries sig-
nificant morbidity, poor functional outcome, and 
a not-insignificant mortality rates.53 This is more 
relevant when one considers the increasing num-
ber of prosthetics being placed in an aging popu-
lation with higher prevalence of comorbidity and 
an increase in multidrug-resistant bacteria.

Identification rates for bacteria in implants 
removed for suspected infection range from 41 
percent up to 86 percent with use of multiple 
standard culture techniques.57 For implants not 
suspected of infection (i.e., aseptic loosening), son-
ication and enrichment culture of operative sam-
ples have shown that 22 percent of these implants 
grew bacteria.28 The most common pathogens 
were Staphylococcus epidermidis and Propionibacterium 
acnes. Analysis of implants thought to have “asep-
tic” loosening have yielded positivity rates of up to 
63 percent with fluorescent in situ hybridization 
and 72 percent with polymerase chain reaction to 
detect bacterial nucleic acid.58,59 These data sug-
gest that the role of biofilm in implant failure is 
greater than previously suspected.

Indirect evidence from analysis of cytokine 
profiles from periprosthetic fluid has also con-
firmed that inflammatory markers such as inter-
leukin 6, tumor necrosis factor-α, tumor growth 
factor-ß, and interleukin 11 may be triggered 
by the presence of bacterial biofilm.60 Research-
ers are investigating the potential for measuring 
serum antibody to staphylococcal slime polysac-
charide antigens as a screening test for underlying 
device-associated infection.61

A recent study has identified the use of 
 infection-specific radiotracers such as bacterio-
phages and thymidine kinase in conjunction with 
single-photon emission computed tomography 
and positron emission tomography scans to diag-
nose biofilm in orthopedic prostheses.34 Further 
investigation of these modalities is warranted.

Fig. 4. confocal live/dead stain of biofilm on prosthetic surface, 
with green representing live bacteria and red representing dead 
bacteria.
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Cardiovascular Implantable Electronic Devices
Cardiovascular implantable electronic devices, 

which include implantable cardioverter-defibril-
lators and cardiac resynchronization therapy 
devices, are prone to develop biofilm infection.45 
Both enrichment culture and sonication have 
yielded skin commensals such as Staphylococcus 
aureus, S. epidermidis, and P. acnes. The incidence 
of clinical infection in these devices is increasing, 
most likely because of the complexity of the proce-
dures involved and the associated comorbidities in 
the patient population receiving these prostheses.

Breast Implants
The presence of subclinical infection as a cause 

of capsular contracture around breast implants 
was first proposed by Burkhardt et al., who subse-
quently recommended betadine pocket irrigation 
to reduce the risk of bacterial contamination.62 
Breast implants are unique in that they are placed 
into a potentially contaminated pocket, with high 
levels of bacteria present in breast ducts and tis-
sue.63–65 Furthermore, the effects of subclinical 
infection are visibly and palpably evident as com-
pared with other prostheses.66

Evidence has been accumulating that biofilm 
is the leading cause of contracture. Clinical stud-
ies have shown a higher rate of bacterial recovery 
in patients with high-grade contracture.42,67 Pajkos 
et al. were the first to show a significant asso-
ciation with S. epidermidis biofilm in women with 
Baker grade III/IV contracture, as compared with 
Baker I/II.43 Biofilm was identified with both soni-
cation and culture, as well as scanning electron 
microscopy.

In vitro studies have shown that bacteria are 
able to bind to the surface of breast implants, 
regardless of surface texture.68

Animal models have now confirmed that seed-
ing of bacteria onto breast implants can lead to 
biofilm formation and subsequent contracture. 
Shah et al., using a rat model, were the first to 
show that the thickness of the capsule was propor-
tionate to the level of staphylococcal inoculation.69 
Tamboto et al. have shown with a porcine model 
that once biofilm is established on the surface of 
a breast implant from either direct inoculation 
or endogenous infection with porcine bacteria, 
80 percent progress to high-grade capsular con-
tracture70 (Fig. 5). In the same study, the presence 
of biofilm was common in both contracted and 
noncontracted groups; however, the contracted 
groups demonstrated a significantly higher num-
ber of colony-forming units, again suggesting that 

critical bacterial mass is needed for progression 
to clinical device-associated infection. Marques et 
al. have shown with a rabbit model that the pres-
ence of coagulase-negative Staphylococcus species 
organisms results in thicker capsule and polymor-
phonuclear infiltrates than in controls.71 Recent 
studies on the long-term effects of biofilm in 
breast implants in the porcine model have shown 
that Baker grade IV implant capsules had a sig-
nificantly higher number of bacteria on quantita-
tive analysis than did Baker I-II capsules.72 Recent 
studies also have demonstrated a higher degree 
of biofilm formation in textured implants, likely 
due to an increase in surface area. Furthermore, a 
chronic T-cell inflammatory infiltrate was present 
in textured implants infected with biofilm.72 This 
finding might point to chronic immune activation 
as a result of subclinical infection.

Strategies for Prevention of Device-Associated 
Infection in Breast Prostheses

On the basis of increasing evidence that bac-
terial access at the time of breast implant inser-
tion is the leading cause of subsequent capsular 
contracture, we propose a number of clinical 
recommendations:

1. Use intravenous antibiotic prophylaxis at 
the time of anesthetic induction.

2. Avoid periareolar incisions; these have been 
shown in both laboratory and clinical studies 
to lead to a higher rate of contracture as the 
pocket dissection is contaminated directly 
by bacteria within the breast tissue.64,73,74

3. Use nipple shields to prevent spillage of 
bacteria into the pocket (Fig. 6).64,73,75

4. Perform careful atraumatic dissection to 
minimize devascularized tissue.

5. Perform careful hemostasis.
6. Avoid dissection into the breast paren-

chyma. The use of a dual-plane, subfascial 
pocket has anatomic advantages.

7. Perform pocket irrigation with triple antibi-
otic solution or betadine.76–78

 8.  Use an introduction sleeve.79 We have rec-
ommended the use of a cut-off surgical 
glove to minimize skin contact (Fig. 6).

 9.  Use new instruments and drapes, and 
change surgical gloves prior to handling 
the implant.

 10.  Minimize the time of implant opening.
 11.  Minimize repositioning and replacement 

of the implant.
 12.  Use a layered closure.
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 13.  Avoid using a drainage tube, which can be 
a potential site of entry for bacteria.

 14.  Use antibiotic prophylaxis to cover sub-
sequent procedures that breach skin or 
mucosa.

PREVENTION
It is arguable that device-associated infections 

are best prevented. Most device-associated infec-
tions are likely to originate from implant contami-
nation at the time of implantation. Perioperative 
intravenous antibiotic prophylaxis is recommended 
for all patients undergoing implant placement. 
This has been shown to be effective in decreasing 
the rate of infection of breast implants.80

Locally delivered antibiotics have also been uti-
lized in both orthopedic and plastic surgery. The 
use of antibiotic-impregnated cement in primary 
arthroplasty, although not universally practiced, 
has been shown to result in the lowest rate of revi-
sion surgery.81,82 In breast surgery, the use of triple 
antibiotic solution has been shown to significantly 
reduce the number of bacteria in the placement 
pocket.76 A further clinical study has established 
that the use of antibiotic irrigation results in a sig-
nificant reduction of capsular contracture.78

A recent animal study of breast implant con-
tracture has shown that the concurrent use of 
antibiotic-impregnated absorbable mesh pro-
duced significantly less biofilm and contracture in 
a porcine model.83 A similar mesh was also utilized 
in a clinical study of cardiovascular implantable 

electronic devices to produce a significantly lower 
infection rate at a 2-month follow-up.84

Antibacterial coatings have been used on 
catheters and drains to reduce the risk of device-
associated infection. In prospective, randomized, 
controlled trials, the use of antibacterial coatings 
such as minocycline/rifampin, silver, platinum, 
and carbon has shown benefit in reducing the 
rate of catheter colonization and subsequent cath-
eter-associated bloodstream infection.85–87 The 
U.S. Food and Drug Administration has approved 
antimicrobial-coated catheters impregnated with 
minocycline and rifampin on their internal and 
external surfaces, on the basis of data showing a 
significant reduction in colonization and sepsis. In 
this study, no antimicrobial resistance emerged.88

The role of subsequent hematogenous seed-
ing of prosthetics remains controversial.89 Clinical 
cases of implant infection have been reported to 
occur after an invasive procedure.90–92 The Ameri-
can Academy of Orthopedic Surgeons has issued 
a statement favoring the use of antimicrobial pro-
phylaxis for patients with prosthetic joints under-
going dental, gastrointestinal, genitourinary, and 
other invasive procedures.93 Further clinical study 
of these phenomena is required.

FUTURE DEVELOPMENTS
A number of potential strategies to reduce 

bacterial biofilm formation on prostheses are 
currently under investigation. Modifying the 

Fig. 5. The subclinical infection hypothesis for breast implants, showing initial contamination, biofilm formation, 
and subsequent inflammation and contracture. chronic biofilm infection may lead to symptoms and potential 
malignant transformation of chronically activated lymphocytes.
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surface of implants with antibacterial coatings, 
biologic membranes, and alterations of physi-
cal characteristics has had varying success.85,94,95 
The use of any drug-related coatings, however, 
would require regulatory scrutiny and approval, 
as the implant becomes a potential drug-delivery 
device. Anti-sense molecules and quorum sense 
inhibitors are compounds that disrupt bacterial 
communication. These have also been shown to 
have some effect on early biofilm formation and 
propagation.96 Electric current and ultrasound as 
physical modalities have also shown some prom-
ise for removing established biofilm attached 
to prostheses.97 Negative pressure in an in vitro 
model has also produced physical changes to 
the extracellular polymeric slime, resulting in 
increased susceptibility of biofilm bacteria to the 
action of anti-infective compounds.98 Nanotech-
nology, especially the use of compounds such 
as zinc oxide, titanium dioxide, polymers, and 

carbon nanotubes, is currently being investigated 
as potential surface disruptor to bacterial attach-
ment.99 Crossed single- and multi-walled carbon 
nanotubes arranged in a criss-cross pattern have 
been shown to prevent Escherichia coli biofilm.100 
The mechanism of action is thought to relate to 
direct toxicity and prevention of gene activation. 
Titanium dioxide nanoparticles have also been 
shown to produce antibiofilm activity when acti-
vated by ultraviolet light, leading to potential ther-
apeutic applications.101

It is likely that in the next few years, a combina-
tion of chemical, physical, and as yet novel surface 
modifications may provide us with a truly intelli-
gent medical device, able to repel planktonic bac-
teria and prevent the activation and attachment 
of biofilm bacteria. Furthermore, these devices 
may have the ability to self-clean by periodically 
examining their surface and actively shedding 
any attached bacterial biofilm. The ultimate goal 

Fig. 6. Surgical glove introduction sleeve to protect implant from contacting the skin and breast tissue during insertion. Note 
nipple shield in place. The sleeve is inspected after removal to ensure that it is complete.
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of providing a truly aseptic environment around 
medical devices may well translate into a reduc-
tion in device-associated infection and ultimately 
into better outcomes for our patients.
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